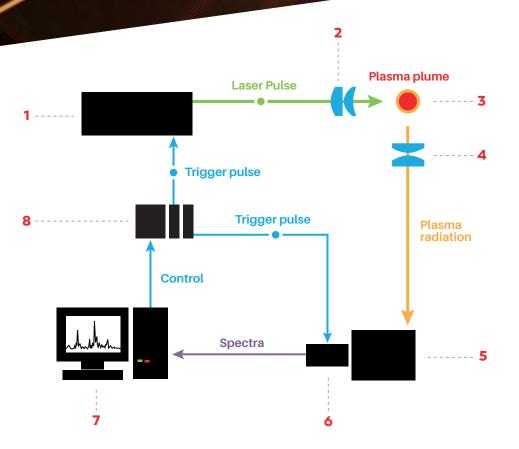


Sci-Trace

Fast and easy multi-elemental chemical analysis

With modular scientific system

Utilizing one of today's most promising analytical technique: Laser-Induced Breakdown Spectroscopy (LIBS)


- Fast determination of elemental composition
- High resolution 2D chemical mapping, visualization of surface heterogenity
- Depth profiling of multilayer materials

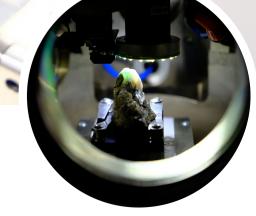
Light elements visibility

Laser-Induced Breakdown Spectroscopy (LIBS)

LIBS is a modern analytical technique, which utilizes a laser pulse for fast determination of chemical composition of the sample. It is an effective combination of laser ablation with an atomic emission spectroscopy.

LIBS principle explained

- 1. Laser pulse is generated by the Laser Head
- 2. and focused on the sample by the Laser-focusing Optics.
- 3. Due to the high irradiation the Microplasma is induced on the sample surface.
- 4. Plasma radiation is collected by the Collecting Optics,
- 5. transmitted and dispersed by the Spectrometer.
- 6. Dispersed radiation is captured by the Detector.
- 7. Resulting spectrum is processed in the PC.
- 8. Whole system is precisely synchronized by the **Digital Delay Generator**.


A number of benefits enables LIBS to analyze solid, liquid or gaseous samples without need of any sample preparation in a matter of seconds.

LIBS is sensitive to the majority of chemical elements with limits of detections as low as 1-100 ppm.

Place your sample on the High precision Motorized Manipulator

- 3-axis motorized movement
- Travel range: 60 x 80 x 45 mm
- < 2 µm movement resolution
- Very High Vacuum ready
- Mounted on the sliding door

A number of sample holders handle various shapes and sizes of your samples

Holders are automatically detected by the system and visualized in the Sample View window of the control software

2 × 30 mm pellet holder

12 × 12 mm pellet holder

Universal clamp holder

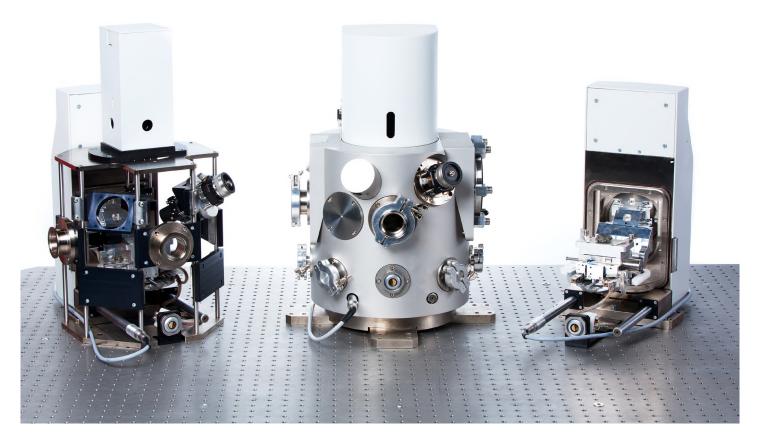
30 mm pellet holder

50 mm pellet holder

Manipulator with the sample forms the Interaction Area

Sci-Trace can be configured with 2 types of Interaction Areas

Cage Chamber for bacis experiments


Cage body with 6 movable input ports, motorized manipulator included

LIBS Interaction Chamber for most advance experiment

Vacuum body with 15 input ports, motorized manipulator included

LIBS Manipulator operating in 3-axis

Standalone motorized manipulator, no frame for optomechanics

LIBS Interaction Chamber

Manipulator mounted on the sliding Chamber door to access the sample easily

Vacuum body provides:

Protection against laser reflections and potentially toxic ablated materials

Windows are covered with the laser filters

Rigid steel construction

Eliminates shape deformation down to UHV (1E-8 Pa)

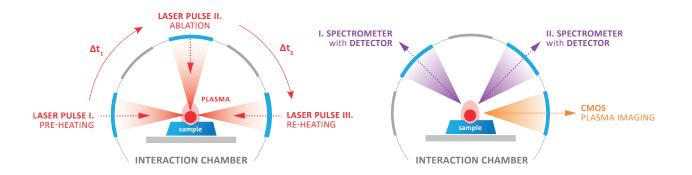
Allows the mounting of various coumponents directly on the Chamber body

Vacuum sealed

Enables to set diverse environmental conditions

Underpressure/overpressure, inert gas atmosphere

Reconfigure or extend your experiment!


• up to 15 chamber input ports in total

8 (up to 12) aiming to the common center spot

• 1 large viewport (filtering 1064 and 532 nm)

Add more lasers to perform Double/Multi-Pulsed LIBS

To enhance the limits of detection or the resolution of the Chemical Mapping

Add second spectrometer

To analyze different plasma parts or capture more spectral regions with different resolution at the same time.

Add some of the additional modules

Gas modules, camera modules, etc.

...or design your own!

Additional Modules

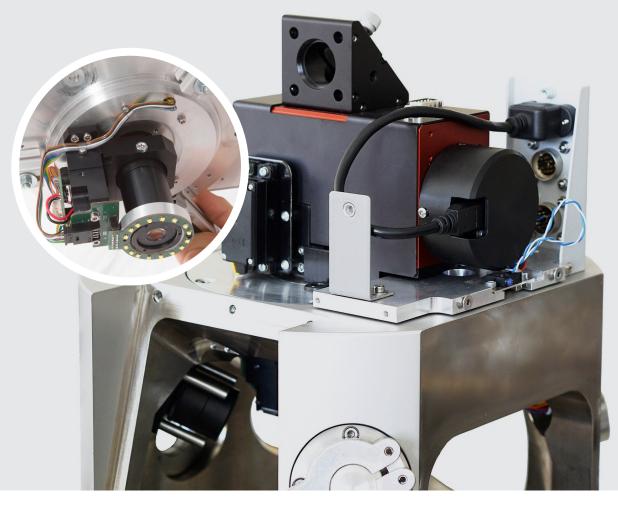
MPI Primary Input Module

MPI is the core module of the Sci-Trace, it focuses the laser onto the sample and provides the sample view capability of the software. It is usually mounted on the top of the chamber.

Primary laser input with the laser-focusing module

Bayonet system enables to easy exhchange of the focusing lenses and objectives

Motorized refocusing enables to change the laser spotsize


Sample view camera

Enables to show a live image of the sample surface

Capability to create a sample overview with large field of view

4-segment LED illumination

The power of each segment can be continuously adjusted to set the optimal illumination for the each of the individual samples

MPR Pressure Regulating Module

MPR enables a quick regulation of the pressure inside the chamber.

Underpressure and/or inert gas atmosphere can dramatically increase Signal to Background and Signal to Noise ratio of the LIBS analysis thus enhance the limits of detection.

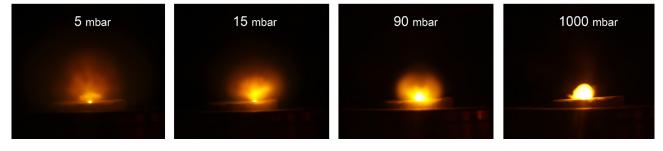
Main MPR components are hidden in the MPR rack shelf, which is linked to the vacuum Chamber body and to the IO panel by the pressure hoses with electromagnetic valves and filters.

MPR features: • Pressure range: 1-1300 mbar(a) · Gas cylinder can be connected to the input Regulating Accurate automatic pressure regulation External indicator of the internal pressure Vent valve, safety valve, oil/dust/contaminant filters Chamber Pressure Ar, He, CO₂, N₂ atmosphere **SAFETY valve** VENT valve 1300 mbar(a) atm. Gas IN Gas OUT + vacuum pump + pressure regulators 1 mbar(a) **INTERACTION CHAMBER**

Additional Modules

MRC Radiation Collecting Module

MRC is optomechanical system for the effective collection of the plasma radiation.



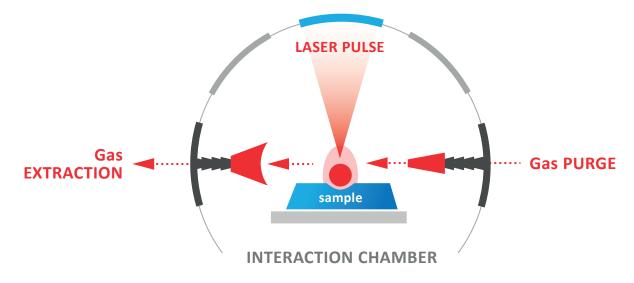
MSC Secondary Camera Module

MSC is a multipurpose camera modul. Live image can be displayed in the control software.

Different plasma shapes under the different pressure conditions.

Gas Modules

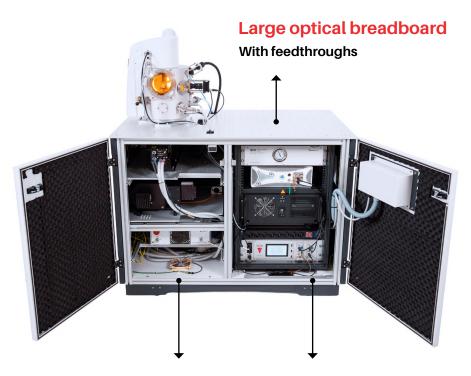
Gas module adapters can be used also for connecting a circuit with a gas sample to perform the Gas LIBS analysis.


MGE

Gas Extraction Module

- · Active extraction of ablated material from the chamber
- Filtrated output
- · Mounted in one of the Chamber ports

MGP Gas Purge Module


- Sample surface cleaning
- Creating a local inert gas atmosphere
- · Continuous or triggered mode
- · Mounted in one of the Chamber ports

Instrumentation Carriage

Instrumentation Carriage carries all the necessary LIBS instruments and control electronics and is divided into two compartments: the Instrumentation Compartment and the Rack Compartment.

Instrumentation compartment

System of reconfigurable shelves for LIBS instruments

- Laser head with accessories (Power Energy Meter)
- Spectrometers + Detectors
- Calibration lamp
- Alignment laser, etc.

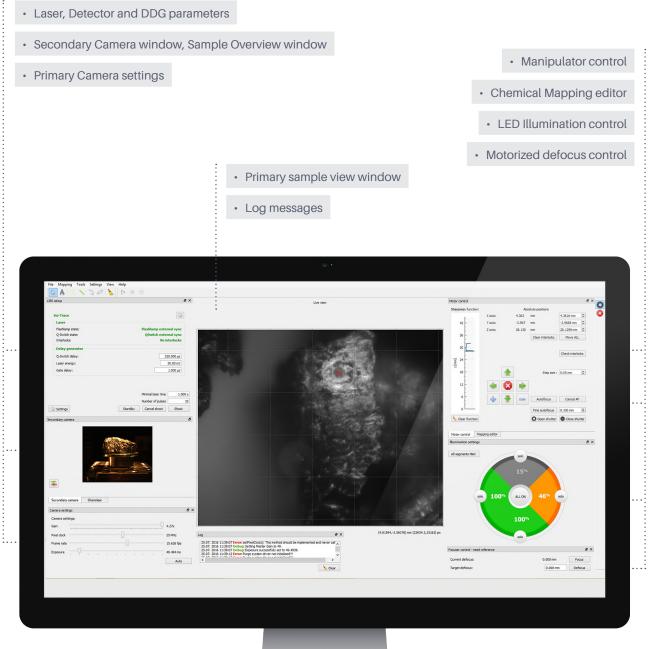
Rack compartment

Standardized RACK frame for control electronics

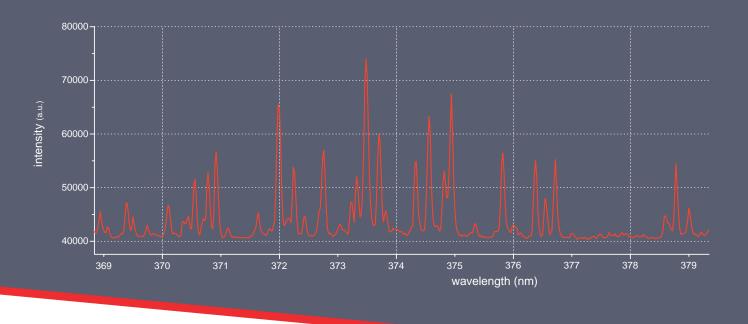
- Control modules
- Control PC
- Digital Delay Generator
- Pressure Regulating Module
- Laser PSU
- Main PSU

Protected by the interlock system

Covered by laser filters

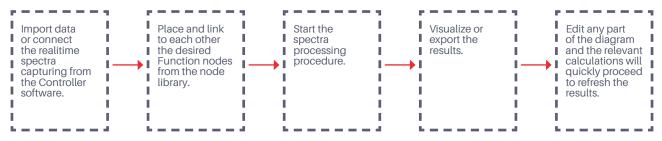

Automated temperature regulation

Control software


Sci-Trace Controller

Control software for the Sci-Trace system enables to control all the functions of the Interaction Chamber and connected modules.

Spectra-processing software



AtomAnalyzer is software for the LIBS spectra processing.

It has been designed to utilize a library of Function nodes. Placing them on the graphical Workspace and linking them to each other results in creating the Spectra processing procedure in intuitive way.

This innovative approach makes the standard and often complex process quicker, easier and more transparent.

Workflow scheme:

Created procedures can be exported or any part saved as a macro.

Still growing number for a still growing number for a state of ready-made Function nodes

GENERAL

Input data Output data Select region Merge spectra Edit metadata MATH Binary operation (subtract, multiply) Sum SNV Mean PEAKS Find peaks Identify peaks (AtomTrace LIBS + NIST database)

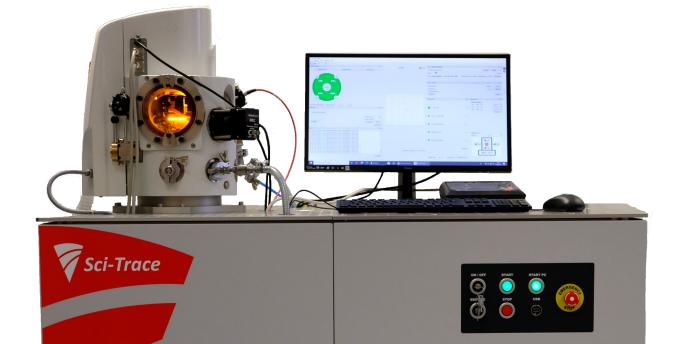
VISUALIZERS

Line chart Scatter plot (used also for Calibration curves) Chemical Mapping Histogram ...and many more are to come (connection to R, PCA, ...)

Graphical User Interface of AtomAnalyzer

The "node" principle of the AtomAnalyzer is powerfull, yet intuitive and efficient for the user.

Datasheet

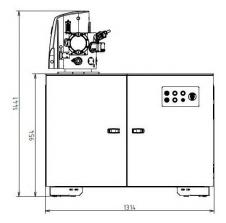

Interaction area

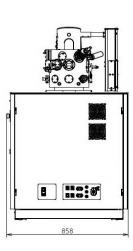
[alt] alternative configuration [opt] optional feature

Manipulator	Motorized manipulator <i>Movement range 60×80×45 mm, Vacuum ready, including series of sample holders</i>
Interaction chamber	Vacuum ready LIBS Interaction Chamber with 8 (up to 12) inputs ports aiming to a common center, 5 lateral inputs, 2 replacable side pane
Top optical breadboard	Anodized AI-alloy board, M6 threaded holes, dimensions: 1310 × 835 × 8 mm Feedthroughs for cable management and laser beam delivery, USB connector panel, possible to mount corner rails for laser <i>f</i> ilter plates [alt] Imperial threaded holes, magnetic steel board, different board dimensions upon request

LIBS instruments

Pulsed laser (example)	Compact nanosecond, Nd:YAG laser energy; 200 mJ@1064 nm; 4-6 ns, 20 Hz, including motorized Attenuator [alt] Lamp/ Diod-pumped ND:YAG (DPSS) [opt] Single/ Double pulsed feature [opt] Other Nd:YAG wavelengths (1064 nm, 532 nm, 355 nm, 266 nm)
Spectrometer (example)	Echelle 195 mm focal length, f/7 aperture, <i>resolving power up to 5000/λ,</i> 200-975 nm [alt] Czerny-Turner, multiple gratings on turret, USB control, multiple outputs
Detector	I CCD 1024 x 1024 px, 190-850 nm [alt] EMCCD, 1004 x 1002 px, 20 Hz [alt] Deep-UV (<200 nm) CCD detector (Chamber-mounted)
Digital Delay Generator	2xDDG - 4 output, pulse 10ns-1000s, resolution 5 ns, delay 0-1000s
Accessories (optional)	Calibration lamp Guiding laser Laser safety glasses Laser energy meter




Modules overview

Primary Input Module including motorized defocus	Assembly directing laser radiation from a laser source to a sample with the function of tracking and mapping the surface of the sample containing a bayonet system for attaching the lens
Radiation Collection Module	Assembly focusing radiation into optical fiber via SMA connector
Pressure Regulating Module	Setting of the pressure in the chamber in the range 1-1300 mbar (a), Ar, He, CO_2 , etc
Gas Purge Module	Cleaning the sample, creating local atmosphere of inert gas, pulse mode
Gas Extracion Module	Filter unit assembly with active carbon filter and continuous suction control, allowing the removal of ablated material from the interaction chamber
Secondary Camera Module	Camera set for real-time sample monitoring with the possibility of recording plasma evolution

Instrumentation carriage

LIBS Instrument compartment	2 anodized Al-alloy shelfs, M6 threaded holes for mounting the laser head / spectroscope / optomechanics [alt] Other number of shelfs upon request
Rack compartment	19-inches rack, height 16U Installed control electronics, control PC, laser PSU, DDG, MPR
Safety elements	Interlock system on chamber door and cabinet door Laser beam hidden in periscope Class 1 laser product
I/O panel	2x HDMI (dual monitor support), LAN, GAS inlet, Gas outlet, Vacuum pump output, Mains
Control panel	Emergency STOP, key ON/OFF, electronics ON/OFF, PC ON/OFF, USB 3.0
Housing and construction	Al profile frame covered by steel plates Cooling fans 4 doors; 4 wheels with retractable stands
Dimensions & Weight	$1310 \times 850 \times 1450$ mm, 330 kg (in the default configuration)
Power requirements	~230 V, 50 Hz, 16 A

Designed by Scientists for Scientists

Instrumentation for the Laser-Induced Breakdown Spectroscopy

AtomTrace is focused on the development and commercialization of promising technologies in the field of fast material analysis by the Laser-Induced Breakdown Spectroscopy (LIBS). Motivation and know-how is given by the years of research experiences of the Laboratory of Laser Spectroscopy (Brno University of Technology, Czech Republic).

AtomTrace, a.s. Vědecko-technický park profesora Lista Kolejní 9, Brno 612 00 Czech Republic VAT number: CZ03396916 E-mail: info@atomtrace.com

www.atomtrace.com

